# Build the categorization ML model The option `use_hashing=True` must be set for the feature extraction. Recommended options also include, `use_idf=1, sublinear_tf=0, binary=0`. * **URL**: `/api/v0/categorization/` * **Method**: `POST` **URL Params**: None * **Data Params**: - `dataset_id`: dataset id - `index`: [required] document indices of the training set - `y`: [required] target binary class relative to index - `method`: classification algorithm to use (default: LogisticRegression), * "LogisticRegression": [LogisticRegression](http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression) * "LinearSVC": [Linear SVM](http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html), * "xgboost": [Gradient Boosting](https://xgboost.readthedocs.io/en/latest/model.html) (*Warning:* for the moment xgboost is not istalled for a direct install on Windows) - `cv`: binary, if true optimal parameters of the ML model are determined by cross-validation over 5 stratified K-folds (default True). - `training_scores`: binary, compute the efficiency scores on the training dataset (default True). * **Success Response**: `HTTP 200` {"id": , "recall": , "precision": , "f1": , "roc_auc": , "average_precision": }