# Compute clustering (Birch) The option `use_hashing=False` must be set for the feature extraction. Recommended options also include, `use_idf=1, sublinear_tf=0, binary=0`. * **URL**: `/api/v0/clustering/birch` * **Method**: `POST` **URL Params**: None * **Data Params**: - `dataset_id`: dataset id - `n_clusters`: the number of clusters - `lsi_components`: (optional) apply LSI with `lsi_components` before clustering (default None) Only k-means can function without the dimentionality reduction provided by LSI, both "birch" and "ward_hc" require this option to be a positive integer. - `threshold`: The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. See [sklearn.cluster.Birch](http://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html) * **Success Response**: `HTTP 200` {"id": }