freediscovery.cluster.ClusterLabels¶
-
class
freediscovery.cluster.
ClusterLabels
(vect, model, pars, lsi=None, cluster_indices=None)[source]¶ Calculate the cluster labels.
This is an internal class that is called by Clustering
Parameters: - vect (VectorizerMixin object) – a scikit-learn’s text vectorizer
- model (ClusterMixin object) – the cluster object
- pars (dict) – clustering algorithms parameters
- lsi_components (TruncatedSVD object or None) – LSA object if it was used for clustering
- cluster_indices (list, default=None) – if not None, ignore clustering given by the clustering model and compute terms for the cluster provided by the given indices
Methods
__init__
(vect, model, pars[, lsi, ...])predict
([method, n_top_words])Compute the cluster labels -
predict
(method=u'centroid-frequency', n_top_words=6)[source]¶ Compute the cluster labels
Parameters: - method (str, optional, default='centroid-frequency') – the method used to compute the centroid labels Must be one of ‘centroid-frequency’,
- n_top_words (int, default=10) – keep only most relevant n_top_words words
Returns: cluster_labels
Return type: array [n_samples]