freediscovery.cluster.Birch¶
-
class
freediscovery.cluster.
Birch
(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True, compute_sample_indices=False)[source]¶ Non online version of the Birch clustering algorithm
This is a patched version of
sklearn.cluster.Birch
that allows to store indices of samples belonging to each subcluster in the hierarchy (scikit-learn/scikit-learn#8808). As a result this version does not allow online learning, however it,- allows to more easily explore the hierarchy of clusters
- can scale better for high dimensional data
See user manual.
For general information about the Birch algorithm, see the
sklearn.cluster.Birch
documentation and the scikit-learn User Guide.Parameters: - args (other parameters) – See
sklearn.cluster.Birch
- compute_sample_indices (bool, default False) – Whether the indices of samples belonging to each hierarchical
subcluster should be included in the
_CFSubcluster.samples_id_
attribute. This option can have some memory overhead.
Examples
>>> from freediscovery.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) ... Birch(branching_factor=50, compute_labels=True, compute_sample_indices=False, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1])
-
fit
(X, y=None)[source]¶ Build a CF Tree for the input data.
Parameters: - X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Input data.
- y (Ignored) –
-
fit_predict
(X, y=None)[source]¶ Performs clustering on X and returns cluster labels.
Parameters: X (ndarray, shape (n_samples, n_features)) – Input data. Returns: y – cluster labels Return type: ndarray, shape (n_samples,)
-
fit_transform
(X, y=None, **fit_params)[source]¶ Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: - X (numpy array of shape [n_samples, n_features]) – Training set.
- y (numpy array of shape [n_samples]) – Target values.
Returns: X_new – Transformed array.
Return type: numpy array of shape [n_samples, n_features_new]
-
get_params
(deep=True)[source]¶ Get parameters for this estimator.
Parameters: deep (boolean, optional) – If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params – Parameter names mapped to their values. Return type: mapping of string to any
-
predict
(X)[source]¶ Predict data using the
centroids_
of subclusters.Avoid computation of the row norms of X.
Parameters: X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Input data. Returns: labels – Labelled data. Return type: ndarray, shape(n_samples)
-
set_params
(**params)[source]¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: Return type: self
-
transform
(X)[source]¶ Transform X into subcluster centroids dimension.
Each dimension represents the distance from the sample point to each cluster centroid.
Parameters: X ({array-like, sparse matrix}, shape (n_samples, n_features)) – Input data. Returns: X_trans – Transformed data. Return type: {array-like, sparse matrix}, shape (n_samples, n_clusters)