Build the categorization ML modelΒΆ
The option use_hashing=True
must be set for the feature extraction. Recommended options also include, use_idf=1, sublinear_tf=0, binary=0
.
URL:
/api/v0/categorization/
Method:
POST
URL Params: NoneData Params:
dataset_id
: dataset idindex
: [required] document indices of the training sety
: [required] target binary class relative to indexmethod
: classification algorithm to use (default: LogisticRegression), * “LogisticRegression”: LogisticRegression * “LinearSVC”: Linear SVM, * “xgboost”: Gradient Boosting (Warning: for the moment xgboost is not istalled for a direct install on Windows)cv
: binary, if true optimal parameters of the ML model are determined by cross-validation over 5 stratified K-folds (default True).training_scores
: binary, compute the efficiency scores on the training dataset (default True).
Success Response:
HTTP 200
{"id": <str>, "recall": <float>, "precision": <float>, "f1": <float>, "roc_auc": <float>, "average_precision": <float>}