Categorization

An example to illustrate binary categorizaiton with FreeDiscovery

from __future__ import print_function

import os.path
import requests
import pandas as pd

pd.options.display.float_format = '{:,.3f}'.format
pd.options.display.expand_frame_repr = False

dataset_name = "treclegal09_2k_subset"     # see list of available datasets

BASE_URL = "http://localhost:5001/api/v0"  # FreeDiscovery server URL

0. Load the example dataset

url = BASE_URL + '/example-dataset/{}'.format(dataset_name)
print(" GET", url)
input_ds = requests.get(url).json()


data_dir = input_ds['metadata']['data_dir']
dataset_definition = [{'document_id': row['document_id'],
                       'file_path': os.path.join(data_dir, row['file_path'])}
                      for row in input_ds['dataset']]

Out:

GET http://localhost:5001/api/v0/example-dataset/treclegal09_2k_subset

1. Feature extraction

print("\n1.a Load dataset and initalize feature extraction")
url = BASE_URL + '/feature-extraction'
print(" POST", url)
res = requests.post(url).json()

dsid = res['id']
print("   => received {}".format(list(res.keys())))
print("   => dsid = {}".format(dsid))

Out:

1.a Load dataset and initalize feature extraction
 POST http://localhost:5001/api/v0/feature-extraction
   => received ['id']
   => dsid = d57bcc9311af477d

1.b Start feature extraction (in the background)

url = BASE_URL+'/feature-extraction/{}'.format(dsid)
print(" POST", url)
res = requests.post(url, json={'dataset_definition': dataset_definition})

Out:

POST http://localhost:5001/api/v0/feature-extraction/d57bcc9311af477d

2. Calculate Latent Semantic Indexing

(used by Nearest Neighbors method)

url = BASE_URL + '/lsi/'
print("POST", url)

n_components = 100
res = requests.post(url,
                    json={'n_components': n_components,
                          'parent_id': dsid
                          }).json()

lsi_id = res['id']
print('  => LSI model id = {}'.format(lsi_id))
print(('  => SVD decomposition with {} dimensions explaining '
       '{:.2f} % variabilty of the data')
      .format(n_components, res['explained_variance']*100))

Out:

POST http://localhost:5001/api/v0/lsi/
  => LSI model id = 299dfe63623f468e
  => SVD decomposition with 100 dimensions explaining 69.79 % variabilty of the data

3. Document categorization

3.a. Train the categorization model

print("   {} positive, {} negative files".format(
      pd.DataFrame(input_ds['training_set'])
        .groupby('category').count()['document_id'], 0))

for method, use_lsi in [('LinearSVC', False),
                        ('NearestNeighbor', True)]:

    print('='*80, '\n', ' '*10,
          method, " + LSI" if use_lsi else ' ', '\n', '='*80)
    if use_lsi:
        # Categorization with the previously created LSI model
        parent_id = lsi_id
    else:
        # Categorization with original text features
        parent_id = dsid

    url = BASE_URL + '/categorization/'
    print(" POST", url)
    print(' Training...')

    res = requests.post(url,
                        json={'parent_id': parent_id,
                              'data': input_ds['training_set'],
                              'method': method,
                              'training_scores': True
                              }).json()

    mid = res['id']
    print("     => model id = {}".format(mid))
    print(("    => Training scores: MAP = {average_precision:.3f}, "
           "ROC-AUC = {roc_auc:.3f}, recall @20%: {recall_at_20p:.3f} ")
          .format(**res['training_scores']))

    print("\n3.b. Check the parameters used in the categorization model")
    url = BASE_URL + '/categorization/{}'.format(mid)
    print(" GET", url)
    res = requests.get(url).json()

    print('\n'.join(['     - {}: {}'.format(key, val)
          for key, val in res.items() if key not in ['index', 'category']]))

    print("\n3.c Categorize the complete dataset with this model")
    url = BASE_URL + '/categorization/{}/predict'.format(mid)
    print(" GET", url)
    res = requests.get(url, json={'subset': 'test'}).json()

    data = []
    for row in res['data']:
        nrow = {'document_id': row['document_id'],
                'category': row['scores'][0]['category'],
                'score': row['scores'][0]['score']}
        if method == 'NearestNeighbor':
            nrow['nearest_document_id'] = row['scores'][0]['document_id']
        data.append(nrow)

    df = pd.DataFrame(data).set_index('document_id')
    print(df)

    print("\n3.d Compute the categorization scores")
    url = BASE_URL + '/metrics/categorization'
    print(" GET", url)
    res = requests.post(url, json={'y_true': input_ds['dataset'],
                                   'y_pred': res['data']}).json()

    print(("    => Test scores: MAP = {average_precision:.3f}, "
           "ROC-AUC = {roc_auc:.3f}, recall @20%: {recall_at_20p:.3f} ")
          .format(**res))

Out:

category
negative    63
positive     5
Name: document_id, dtype: int64 positive, 0 negative files
================================================================================
            LinearSVC
 ================================================================================
 POST http://localhost:5001/api/v0/categorization/
 Training...
     => model id = 1d814ddcb58a4c10
    => Training scores: MAP = 0.815, ROC-AUC = 0.900, recall @20%: 0.800

3.b. Check the parameters used in the categorization model
 GET http://localhost:5001/api/v0/categorization/1d814ddcb58a4c10
     - method: LinearSVC
     - options: {'C': 1.0, 'class_weight': None, 'dual': True, 'fit_intercept': True, 'intercept_scaling': 1, 'loss': 'squared_hinge', 'max_iter': 1000, 'multi_class': 'ovr', 'penalty': 'l2', 'random_state': None, 'tol': 0.0001, 'verbose': 0}

3.c Categorize the complete dataset with this model
 GET http://localhost:5001/api/v0/categorization/1d814ddcb58a4c10/predict
             category  score
document_id
568516       negative  0.778
3717184      negative  0.762
454276       negative  0.762
5171076      negative  0.760
3568321      negative  0.759
1803649      negative  0.754
1252161      negative  0.753
5166529      negative  0.752
573049       negative  0.752
885481       negative  0.751
877969       negative  0.751
3286969      negative  0.750
274576       negative  0.750
118336       negative  0.750
5239521      negative  0.749
3709476      negative  0.749
319225       negative  0.749
4941729      negative  0.749
119716       negative  0.749
4507129      negative  0.749
4713241      negative  0.748
2845969      negative  0.748
4981824      negative  0.748
4708900      negative  0.748
320356       negative  0.748
4831204      negative  0.748
4359744      negative  0.747
318096       negative  0.747
1190281      negative  0.746
1254400      negative  0.746
...               ...    ...
4652649      negative  0.631
36481        negative  0.631
38025        negative  0.631
199809       negative  0.630
90000        negative  0.630
4857616      negative  0.630
268324       negative  0.630
270400       negative  0.630
80656        negative  0.630
5022081      negative  0.630
4968441      negative  0.630
88804        negative  0.630
1170724      negative  0.630
79524        negative  0.630
3073009      negative  0.629
350464       negative  0.628
984064       negative  0.627
221841       negative  0.627
846400       negative  0.621
3240000      negative  0.620
3222025      negative  0.620
1046529      negative  0.620
316969       negative  0.619
822649       negative  0.619
850084       negative  0.575
833569       negative  0.567
3422500      negative  0.552
819025       negative  0.549
3182656      negative  0.519
3323329      negative  0.501

[2397 rows x 2 columns]

3.d Compute the categorization scores
 GET http://localhost:5001/api/v0/metrics/categorization
    => Test scores: MAP = 0.982, ROC-AUC = 1.000, recall @20%: 1.000
================================================================================
            NearestNeighbor  + LSI
 ================================================================================
 POST http://localhost:5001/api/v0/categorization/
 Training...
     => model id = c8262ecf879941d9
    => Training scores: MAP = 1.000, ROC-AUC = 1.000, recall @20%: 1.000

3.b. Check the parameters used in the categorization model
 GET http://localhost:5001/api/v0/categorization/c8262ecf879941d9
     - method: NearestNeighbor
     - options: {'algorithm': 'brute', 'leaf_size': 30, 'n_jobs': 1, 'radius': None}

3.c Categorize the complete dataset with this model
 GET http://localhost:5001/api/v0/categorization/c8262ecf879941d9/predict
             category  nearest_document_id  score
document_id
37249        negative               150544  1.000
1245456      negative               150544  1.000
205209       negative               150544  1.000
35721        negative               150544  1.000
541696       negative               150544  1.000
531441       negative               150544  1.000
75076        negative               150544  1.000
851929       negative               150544  1.000
3625216      negative              1218816  1.000
1203409      negative               150544  1.000
3617604      negative              1218816  1.000
1210000      negative              1218816  1.000
1214404      negative              1218816  1.000
432964       negative               150544  1.000
354025       negative               150544  1.000
465124       negative               150544  1.000
861184       negative               150544  1.000
801025       negative               150544  1.000
868624       negative               150544  1.000
1256641      negative               150544  1.000
1261129      negative               150544  1.000
138384       negative               150544  1.000
5041         negative               150544  1.000
5625         negative               150544  1.000
1067089      negative               150544  1.000
164836       negative               150544  1.000
230400       negative               150544  1.000
1279161      negative               150544  1.000
925444       negative               150544  1.000
881721       negative               150544  1.000
...               ...                  ...    ...
5776         negative              1263376  0.086
4338889      negative              1263376  0.086
5184         negative              1263376  0.086
4624         negative              1263376  0.086
4322241      negative              1263376  0.086
4318084      negative               456976  0.086
4334724      negative               456976  0.086
4489         negative               456976  0.086
599076       negative              1846881  0.083
1800964      negative              1846881  0.083
300304       negative                 6561  0.083
363609       negative               335241  0.082
544644       positive               844561  0.082
490000       negative                   81  0.074
504100       negative              6007401  0.068
682276       negative                 1024  0.067
1582564      negative                 1024  0.067
1530169      negative              2788900  0.061
627264       negative              2788900  0.061
1532644      negative              2788900  0.059
628849       negative              2788900  0.059
609961       negative              2788900  0.058
1500625      negative              2788900  0.058
1503076      negative              2788900  0.056
611524       negative              2788900  0.056
361201       positive              3207681  0.051
546121       positive              3207681  0.051
524176       positive               844561  0.046
519841       negative              2560000  0.045
543169       positive               844561  0.043

[2397 rows x 3 columns]

3.d Compute the categorization scores
 GET http://localhost:5001/api/v0/metrics/categorization
    => Test scores: MAP = 0.287, ROC-AUC = 0.667, recall @20%: 0.571

5 Delete the extracted features (and LSI decomposition)

url = BASE_URL + '/feature-extraction/{}'.format(dsid)
requests.delete(url)

Total running time of the script: ( 0 minutes 5.449 seconds)

Generated by Sphinx-Gallery